argopy.data_fetchers.gdac_data.GDACArgoDataFetcher

argopy.data_fetchers.gdac_data.GDACArgoDataFetcher#

class GDACArgoDataFetcher(gdac: str = '', ds: str = '', cache: bool = False, cachedir: str = '', dimension: str = 'point', errors: str = 'raise', parallel: bool = False, progress: bool = False, api_timeout: int = 0, **kwargs)[source]#

Manage access to Argo data from a GDAC server

Warning

This class is a prototype not meant to be instantiated directly

__init__(gdac: str = '', ds: str = '', cache: bool = False, cachedir: str = '', dimension: str = 'point', errors: str = 'raise', parallel: bool = False, progress: bool = False, api_timeout: int = 0, **kwargs)[source]#

Init fetcher

Parameters:
  • gdac (str (optional)) – Path to the local or remote directory where the ‘dac’ folder is located

  • ds (str (optional)) – Dataset to load: ‘phy’ or ‘bgc’

  • cache (bool (optional)) – Cache data or not (default: False)

  • cachedir (str (optional)) – Path to cache folder

  • dimension (str, default: 'point') – Main dimension of the output dataset. This can be “profile” to retrieve a collection of profiles, or “point” (default) to have data as a collection of measurements. This can be used to optimise performances.

  • errors (str (optional)) – If set to ‘raise’ (default), will raise a NetCDF4FileNotFoundError error if any of the requested files cannot be found. If set to ‘ignore’, the file not found is skipped when fetching data.

  • parallel (bool, str, distributed.Client, default: False) –

    Set whether to use parallelization or not, and possibly which method to use.

    Possible values:
    • False: no parallelization is used

    • True: use default method specified by the parallel_default_method option

    • any other values accepted by the parallel_default_method option

  • progress (bool (optional)) – Show a progress bar or not when fetching data.

  • api_timeout (int (optional)) – Server request time out in seconds. Set to OPTIONS[‘api_timeout’] by default.

Methods

__init__([gdac, ds, cache, cachedir, ...])

Init fetcher

clear_cache()

Remove cached files and entries from resources opened with this fetcher

cname()

Return a unique string defining the constraints

dashboard(**kw)

Return 3rd party dashboard for the access point

filter_data_mode(ds, **kwargs)

Apply xarray argo accessor filter_data_mode method

filter_points(ds)

filter_qc(ds, **kwargs)

filter_researchmode(ds, *args, **kwargs)

Filter dataset for research user mode

filter_variables(ds, *args, **kwargs)

Filter variables according to dataset and user mode

init(*args, **kwargs)

Initialisation for a specific fetcher

pre_process(ds, *args, **kwargs)

to_xarray([errors])

Load Argo data and return a xarray.Dataset

transform_data_mode(ds, **kwargs)

Apply xarray argo accessor transform_data_mode method

uri_mono2multi(URIs)

Convert mono-profile URI files to multi-profile files

Attributes

cachepath

Return path to cache file(s) for this request

data_source

sha

Returns a unique SHA for a specific cname / fetcher implementation

uri

Return the list of files to load